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The ‘Sticky Elastica’: delamination blisters beyond small
deformations†

Till J. W. Wagnera and Dominic Vella*b

We consider the form of an elastic loop adhered to a rigid substrate: the ‘Sticky Elastica’. In contrast to

previous studies of the shape of delamination ‘blisters’, the theory developed accounts for deflections

with large slope (i.e. geometrically nonlinear). Starting from the classical Euler Elastica we provide

numerical results for the dimensions of such blisters for a variety of end–end confinements and develop

asymptotic expressions that reproduce these results well, even up to the point of self-contact.

Interestingly, we find that the width of such blisters does not grow monotonically with increased

confinement. Our theoretical predictions are confirmed by simple desktop experiments and suggest a

new method for the measurement of the elastocapillary length for deformations that cannot be

considered small. We discuss the implications of our results for applications such as flexible electronics.
1 Introduction

Delamination blisters are oen the undesired consequence of
an adhesive lm placed imperfectly on a substrate. They are the
nemesis of anyone trying to wrap Christmas presents using
sticky tape and regularly frustrate smartphone users who want
to put a protective lm on their phone screen. Blisters appear
when an adhered lm is subject to an in-plane compressive
strain relative to the substrate. Such a strain can result from a
differential compression (e.g. due to heating) or because of a
mismatch between substrate and lm geometries.1–4 Even small
mismatches can give rise to signicant blisters, which can, in
turn, greatly affect the functionality of the adhering lm in
applications from protective coatings to the conduction char-
acteristics of few layer graphene sheets.5–7

Historically, delamination blisters have found use as a
simple means of measuring the strength of adhesion between
two materials, a series of methods known as blister tests.8–12

However, more recently, and in spite of some of the negative
connotations of delamination, it has been proposed that partial
delamination and buckling of thin adhesive sheets can be
intentionally integrated into the design of exible electronic
devices.13–16 In these devices, the conducting components are
only adhered to the substrate in some regions and not others;
this ‘blistered’ shape allows them to accommodate the exure
of the substrate without deforming plastically. In current ex-
ible electronic applications the form of these blisters is
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controlled by patterning the substrate with a periodic variation
in adhesive strength. However, such techniques may suffer
from the spontaneous formation of delamination blisters with a
well-dened size;3,17 understanding the size and form of such
blisters is important since their characteristic curvature can
damage the conducting components.13,18

While the formation of delamination blisters is a classical
problem, previous analyses have focussed on the limit of blis-
ters with a small slope (small deformations). However, in many
new applications, this restriction is inappropriate. The shape of
a highly deformed elastic strip, commonly referred to as an
‘Elastica’, has been widely studied since the time of the Ber-
noullis and Euler.19 Indeed, research continues on the contact
of an Elastica with a rigid boundary.20,21 However, the combi-
nation of adhesion and large deection elasticity seems only to
have been considered for the case of self-contacting
‘rackets’.22,23 In this article, therefore, we consider the form of a
blister without the restriction of small slopes — the ‘Sticky
Elastica’. Using a combination of numerical, asymptotic and
experimental techniques we show how the results of previous
small deformation analyses may be altered to take into account
these large deformations and suggest how experimental data
might best be analysed in the light of our results.
2 Theory

We consider an inextensible elastic sheet, resting on a semi-
innite, rigid substrate. The sheet is subjected to an in-plane
compression Dl which results in a delamination blister of
height d and width l (Fig. 1). The rate of compression is
assumed small so that the sheet is in static equilibrium at all
times. The shape of the blister is dened by the intrinsic angle
q(s), (s being the arc-length) and a point on the blister has
Soft Matter, 2013, 9, 1025–1030 | 1025
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Fig. 1 Top: schematic of a thin sheet resting on an adhesive substrate and
subject to an end–end compression Dl. The result is a blister with arc-length lb and
dimensions d and l . Centre: experimental blister (l ec z 0.76 cm), with Dl ¼
0.03 cm (DL z 0.04), leading to d ¼ 0.17 cm, l ¼ 1.16 cm, (d z 0.22, l z 1.53).
Bottom: illustration of the four-fold symmetry of the Elastica; the image in the
central panel is reconstructed by taking the segment �l/4 < s < 0, (solid frame)
and rotating and reflecting to form the other images— inversions of a, b illustrate
the different reflexions. Here the sheet thickness h ¼ 42 mm.
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coordinates [x(s), w(s)] where dx/ds ¼ cos q and dw/ds ¼ sin q

arise from geometric considerations. The delaminated portion
has arc-length lb, which is initially unknown. The end-points of
the delaminated regions are then given by s ¼ �lb/2 and the
system is assumed to be symmetric around s ¼ 0. Since the
sheet remains smooth, we must have that q(�lb/2) ¼ q(0) ¼ 0.

We shall use a variational approach to derive the appropriate
governing equation and boundary conditions. In this formula-
tion of the problem, we consider the energy of the system to be
composed of a contribution from the bending energy of the sheet
and another term from the sheet–substrate adhesion energy, Dg.
(We neglect the effect of the weight of the delaminated portion of
the sheet for simplicity. From the heavy elastica equation24 we
see that this assumption is valid provided that lbrgh/Dg � 1, in
which r is the sheet density, h its thickness and g the acceleration
due to gravity.†) We must minimize this combined energy
subject to the constraint of an imposed end–end displacement
Dl. Supplementing the energy (measured relative to the at, fully
adhered state) with a Lagrange multiplier to enforce this
constraint, the problem reduces to the minimization of

U ¼
ðlb=2

�lb=2

�
1

2
Bqs

2 þ Dg

�
ds� a

2
64l � Dl �

ðlb=2

�lb=2

cos qds

3
75: (1)

Here the rst term represents the bending energy of the sheet,
which has Young's modulus E and Poisson ratio n so that the
bending stiffness B ¼ Eh3/12(1 � y2). The second term repre-
sents the adhesive penalty per unit length due to delamination.
The third term corresponds to the constraint of inextensibility,
which is enforced by the Lagrange multiplier a.

In the second term of eqn (1), Dg ¼ g(sheet)
sv + g(substrate)

sv � gss,
where gsv represents the solid–vapour surface energy and gss the
solid–solid energy for the sheet–substrate interface.† Generally,
delamination is composed of fracture in a combination of
modes I and II. The interfacial energy Dg is therefore a function
1026 | Soft Matter, 2013, 9, 1025–1030
of the relative amounts of each mode present in a given
scenario. However, for blisters much larger than the thickness
of the sheet, this fraction is independent of shape and so Dg

may be assumed constant.25

Using the Calculus of Variations allows us to determine
equations for the shape of the delaminated blister, q(s), and the
length of the delaminated portion, lb, which extremize the
functional U given in eqn (1). The requirement that dU/dq ¼
0 yields the classical Elastica equation for a free sheet that
experiences a constant compressive stress T:26,27

Bqss ¼ �Tsin q, (2)

where the Lagrange multiplier a / �T. The requirement that
dU/dl ¼ 0 yields a condition on the curvature at contact†,8,22,28,29

qsð�lb=2Þ ¼
ffiffiffi
2

p
=‘ec; (3)

where l ec ¼ (B/Dg)1/2 is the elasto-capillary length of the system.30

We note that eqn (2) is the classic Elastica equation and hence
that the shape of the delamination blister is precisely that of an
Elastica with the same arc length lb and compression Dl. The
crucial difference between the classic Elastica and the ‘Sticky
Elastica’ is the following: the former has a xed arc length while
the arc length of the latter changes in response to compression to
ensure that the curvature at the end point satises eqn (3).

It is well known that it is possible to make some analytical
progress for the nonlinear eqn (2), which also describes the
motion of a constant length pendulum (with arc length replaced
by time). However, it is instructive to consider rst the linear-
ized problem, i.e. the small deformation limit. In this limit, q(s)
� 1 and geometrical considerations give us that q � d/l , where
d is the blister height and l its width. Since eqn (3) gives us that
qs � 1/l ec and l z lb (for small deformations) we then have that
d/l 2 � 1/l ec. A more careful analysis shows3 that, in fact,

d=‘2z
1

21=2p2
‘ec

�1: (4)

Referring to the quantity d/l 2 as the typical curvature of the
blister we see that, for small deformations at least, the typical
curvature is a constant multiple of l ec

�1, independently of the
dimensions of the blister.3,4 This result is therefore a simple, yet
useful method for measuring the elastocapillary length of a
system. The question arises, however, of how this result is
modied for blisters beyond the small deformation limit? On
dimensional grounds d/l 2 must still scale like l ec

�1 but, as we
shall see, the (dimensionless) aspect ratio d/l also plays a role.

To facilitate our analysis, we rst non-dimensionalize the
system by letting s¼ T/Dg, d¼ d/l ec, l¼ l /l ec, S¼ s/l ec, L¼ lb/l ec,
etc. The Elastica eqn (2) then becomes qss ¼ �ssin q, with
boundary condition qsð�L=2Þ ¼ ffiffiffi

2
p

. Integrating once and
imposing the latter condition, we nd that the compressive stress
s and maximum angle q0 are related by s ¼ 1/(1 � cos q0), giving

qS
2 ¼ 2

cos q� cos q0

1� cos q0
; (5)

where q0 is dened as the angle at which the curvature vanishes,
i.e. the maximum value of q within the sheet. By symmetry, we
have that q(�L/2)¼ q(0)¼ q(L/2)¼ 0. The angle qmust therefore
This journal is ª The Royal Society of Chemistry 2013
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Fig. 2 The ‘Sticky Elastica’ for DL ¼ 0.18, 1.12, 3.25, 5.63, (l ec ¼ 1.35 cm). In each
case the theoretical prediction obtained using the experimentally measured value
of Dl gives a good account of the experimentally observed blister shape (dashed
curves). Here the sheet thickness h ¼ 70 mm, corresponding to black triangles in
Fig. 3 and 4. Note that there is a loss of symmetry for the largest compression. We
believe this to be an effect of the small, but finite, weight of the sheet since the
‘heavy’ elastica is subject to just such an instability.24,32
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increase from 0 at S ¼ �L/2 up to q0 and subsequently decrease
from q0 to match q ¼ 0 at S ¼ 0. The symmetry of the problem
therefore dictates that an inection point qS ¼ 0 must occur at
S ¼ �L/4 so that

qS ¼
ffiffiffi
2

p �
cos q� cos q0

1� cos q0

�1=2

�
� �1; 0#jSj\L=4;
þ1;L=4#jSj#L=2:

(6)

We note that this requires that the blister is not only
symmetric around S ¼ 0 but, further, that the segment L/4 < rSr
< L/2 is a rotation by 180� of the segment 0 < rSr < L/4. This
rotational and reectional symmetry (illustrated in Fig. 1) is
easily appreciated when considering the analogy between the
motion of a pendulum and the shape of an elastica.19 Within
this analogy, the four segments of the elastica correspond to the
four phases of the pendulum, which are clearly symmetric
around the pendulum's lowest point and time reversed around
its highest point.

To make further progress requires the determination of the
unknown angle q0, which in turn requires a relationship
between the compression applied, DL, and q0. Using the
symmetry of the problem just discussed, we have that

DL ¼ 4

ðL=4

0

ð1� cos qÞdS:

Making use of the substitution dS¼ dq/qS and integrating from
q ¼ 0 to q ¼ q0, we nd that:

DL ¼ 25/2(1 � cos q0)(F[q] � E[q]), (7)

where q ¼ (q0/2, csc
2q0/2), and F[.] and E[.] are the elliptical

integrals of the rst and second kind, respectively.31 The
expression (7) in principle allows us to obtain the maximum
angle as a function of end-to-end compression, q0 ¼ q0(DL),
numerically. Once q0 is determined, it is a simple matter to
calculate the dimensions of the blister as

d ¼
ð0

�L=2

sin qdS ¼ 23=2ð1� cos q0Þ;

l ¼
ðL=2

�L=2

cos qdS ¼ 25=2fð1� cos q0ÞE½q� þ cos q0F ½q�g:
(8)

Plots of the (numerically determined) evolution of the blister
dimensions with increasing compression are given for l¼ l(DL)
in Fig. 3a and for d ¼ d(DL) in Fig. 3b.

The shape of the blister [X(S), W(S)] can also be determined
using analogous integrals, and compared with experimental
results (see Fig. 2). We also nd that at a critical compression,
DL* z 8.71949 (corresponding to l* z 1.55502, d* z 4.13610)
the sheet comes into self-contact, forming a perfect “S” shape.
3 Asymptotic results

While the solution in terms of elliptic integrals is relatively
simple to implement computationally, it is of limited use in
This journal is ª The Royal Society of Chemistry 2013
experimental settings. We therefore consider some asymptotic
results for DL � 1. We shall see that these give a very good
account of the numerical results, even up to self-contact.

The asymptotic result in eqn (4) may be found by considering
the leading order behaviour. However, it is possible to do better
by retaining higher order terms in the q0 power series expan-
sions of d, l and DL. By eliminating q0 in favour of DL we nd
that†

l ¼ 2p2=3DL1=3 � 7

8
DLþ.; (9)

d ¼ 2
ffiffiffi
2

p �
DL

p

�2=3

� 1

2
ffiffiffi
2

p
�
DL

p

�4=3

þ.: (10)

The one-term and two-term asymptotic expansions for l(DL)
and d(DL) are shown in Fig. 3a and b, respectively. These
demonstrate that, although only strictly being valid for DL� 1,
the two-term expansion compares extremely well with the
numerical results even for DL z 8, i.e. close to self-contact. We
also note that the evolution of l(DL) is non-monotonic (see
Fig. 3a), decreasing for DL T 64p/213/2 z 2.0894. While the
asymptotic expression for d likewise predicts a maximum
height, this only occurs for DL z 8p, which is far beyond the
point of self-contact, DL* (and hence is not physically
realizable).

The non-monotonicity of the blister width, l, has been
observed in other, related, systems33 but is not observed with
the classic Elastica, for which l decreases monotonically as the
compression is increased. The non-monotonic behaviour
observed for the Sticky Elastica is caused by the fact that the arc
length of the blistered region initially increases rapidly with
increasing compression; this increasing length of the buckled
Soft Matter, 2013, 9, 1025–1030 | 1027
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Fig. 3 (a) Blister width, l, as a function of the compression DL. The full numerical
solution (solid black curve) is partially captured by the first term of the asymptotic
expression (dotted). The two term asymptotic approximation (eqn (9)) (dashed)
gives a much better prediction and explains the non-monotonic behaviour. Points
refer to experimental results obtained with different sheets. Sheet thicknesses are:
h1¼ 52 mm ( ), h2¼ 42 mm ( ), h3¼ 41 mm ( ) and h4¼ 70 mm (:). Self-contact
occurs at DL* z 8.719, l* z 1.555 (+). (b) Blister height, d(DL), with asymptotic
approximations given by eqn (10). The height at self-contact is d* z 4.136. All
lengths are non-dimensionalized by l ec, determined using the method described
later. Typical error bars are shown for each series of experiments.

Fig. 4 Dimensionless typical curvature of blisters d/l2 as a function of the aspect
ratio d/l. Shown are the full numerical solution (solid black), along with the first
order (dotted) and second order asymptotic approximations (eqn (11)), (dashed).
Points refer to different thickness sheets: h1 ¼ 52 mm ( ), h2 ¼ 42 mm ( ), h3 ¼
41 mm ( ) and h4 ¼ 70 mm (:). The point of self-contact lies outside the plot
range shown, at d*/l* z 2.660, d*/l*2 z 1.710. All lengths are non-dimen-
sionalized by l ec. Error bars are representative of each set of experiments. Inset:
Determination of the elasto-capillary length, l ec, from the dimensional value of
the typical curvature d/l 2, for the four sets of experiments discussed. The straight
lines represent best fits to the raw data whose slope provides an estimate for the
quantity 1/l ec.

Soft Matter Paper

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

C
am

br
id

ge
 o

n 
14

/0
4/

20
13

 1
1:

39
:5

9.
 

Pu
bl

is
he

d 
on

 2
7 

N
ov

em
be

r 
20

12
 o

n 
ht

tp
://

pu
bs

.r
sc

.o
rg

 | 
do

i:1
0.

10
39

/C
2S

M
26

91
6C

View Article Online
region overcomes the decrease caused by compression and so l

initially increases with DL. However, with still larger compres-
sion, the increase of arc length slows and is not large enough to
keep up with the imposed compression: l reaches a maximum
value and begins to decrease. It is also interesting to observe
that, except for very small compressions (DL ( 0.3), the
dependence of blister width on DL is relatively weak; we there-
fore propose that, as a rule of thumb, l z 3l ec. This result
provides a quick way to get a rough estimate for the elasto-
capillary length by looking just at the typical width of the blis-
ters in a system. This gives further justication to the
assumption that the blister width is roughly constant in
delamination buckling, an assumption oen called upon in
previous work.25

Using the asymptotic results from eqn (9) and (10), we can
return to the question of central interest here: how does the
typical curvature d/l 2 relate to the elastocapillary length? We
nd that the typical curvature can be expressed simply by
eliminating DL in favour of d/l, the aspect ratio of the blister:
1028 | Soft Matter, 2013, 9, 1025–1030
d

l2
¼ 1ffiffiffi

2
p

p2
þ 3

8
ffiffiffi
2

p
�
d

l

�2

�.: (11)

Thus, in the limit of small blisters we recover the result (4).
However, as d/l increases the typical curvature grows roughly
quadratically. The asymptotic relationship (11) agrees with the
results of numerical calculations, as shown in Fig. 4.
4 Experiments

The preceding theoretical analysis was tested using a set of
desktop experiments at a macroscopic scale. We used plastic
sheets of different thicknesses adhered to tacky rubber surfaces
(fabricated from Zhermack dental polymer). The sheets used
were uniform strips of adhesive tape (thickness h1 ¼ 52 mm, red
circles in Fig. 3 and 4) and other thin elastic sheets without an
adhesive coating, which were obtained from the labels of
commonly available drink bottles (Aquana, h2 ¼ 42 mm, green
squares; Copella, h3 ¼ 41 mm, blue diamonds; and Vitamin
Water h4 ¼ 70 mm, black triangles in Fig. 3 and 4). The Young's
modulus of these sheets was measured to be E ¼ 0.7 � 0.1 GPa
using the deection of the sheets under their own weight.

For the adhesion experiments described here, the sheets
were cut into strips of width 1 cm and length 10 cm. The ends of
these strips were brought together by a distance Dl and the strip
then brought into contact with the substrate. Upon deposition
the strip was forced into adhesion beyond its equilibrium state
by applying pressure over almost the entire strip (missing out
the central blistered part and avoiding the plastic deformations
that occur for very high curvatures). Once the external pressure
is removed, the strip spontaneously deadheres until reaching
an equilibrium state in which the length of its deadhered
portion, lb, is well-dened, as shown in Fig. 2. The results of
This journal is ª The Royal Society of Chemistry 2013
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experiments performed in this way were robust and
reproducible.

The dimensions d and l of the blisters in equilibrium were
measured for a range of the end–end compression Dl. A
comparison of experimental and theoretical predictions is given
in Fig. 3 and 4. To plot these in the dimensionless form the
elastocapillary length for each strip–substrate pair had to be
determined. This was done by plotting the dimensional
values of d/l 2 against the dimensionless quantity
1=

ffiffiffi
2

p
p2 þ ð3=8 ffiffiffi

2
p Þðd=l Þ2 — eqn (11) leads us to expect that

such a plot should yield a straight line with a slope 1/l ec
allowing the value of l ec to be estimated. Such a plot is shown in
Fig. 4 (inset) and demonstrates the expected linear behaviour.
We therefore believe that this method represents an effective
method for determining the elastocapillary length in scenarios
where the aspect ratio d/l is not small. We nd for the adhesive
tape l (1)ec ¼ 0.62 cm and for the non-adhesive tapes l (2)ec ¼
0.76 cm, l (3)ec ¼ 0.64 cm and l (4)ec ¼ 1.35 cm. From this we infer for
the adhesive tape Dg(1) x 0.25 J m�2 and for the non-adhesive
tapes Dg(2�4) x 0.08–0.13 J m�2. This is comparable to values
obtained in similar studies.3

The agreement between theory and experiment shown in
Fig. 3 and 4 seems to be reasonably robust given the relative
difficulty in measuring the exact blister width l (rather than
blister height d, which is much easier to measure). This is
particularly important in Fig. 4, due to the l �2 dependence of
the typical curvature and the (d/l )2 term in eqn (11). We note
from both gures that the agreement between experimental and
asymptotic results is better than that between experimental and
numerical results; we attribute this to the fact that the value of
l ec was determined by using the asymptotic result (11), rather
than the full theoretical solution. Attempts to use higher order
asymptotic expansions fail because of the compounding of the
error in the measurement of l that occurs when computing
(d/l )4 and higher order terms.

5 Conclusions

In this article we have presented numerical results for the shape
and dimensions of delamination blisters allowing for the
possibility that the slope of the blister may not be small. An
asymptotic analysis yielded simple expressions for the dimen-
sions of the blisters, which are in excellent agreement with
numerical results up to the point of self-contact, where DLz 8.
This is particularly striking, since the asymptotic calculations
are only strictly valid in the limit DL � 1. The success of these
asymptotic results also enabled us to propose a straightforward
way to estimate the strength of adhesion based on the geometry
of delamination blisters beyond the limit of small deforma-
tions. We tested this technique with a series of simple table-top
experiments obtaining good agreement between experiment
and theory with a single tting parameter: the elastocapillary
length l ec, which relates the bending rigidity of the lm and the
adhesive energy.

Our study was motivated by the controlled use of delami-
nation in technologies at small scales, most notably in exible
electronics. In these situations, the deformation of the
This journal is ª The Royal Society of Chemistry 2013
delaminated components is oen not small and so we expect
that our results would be of use in such applications, albeit
provided that a simple adhesion is used, rather than the
patterning that is currently common.13 In our analysis, we have
assumed that there is no relative motion between the strip and
the substrate. In reality, this can be achieved in two ways: (i) the
sheet is conned before it is brought in contact with the rigid
substrate (as in the experiments presented here) or (ii) the
(relatively stiff) strip is initially at and adhered to a
compressible substrate. If the entire strip–substrate system is
then compressed, the strip is forced to buckle out of plane and
delaminate from the substrate forming a delamination blister.
For our analysis to be applicable to this latter case, we require
that the surface energy decrease due to the decrease in
the substrate surface during compression is small, i.e. that
gsv � gss.†

The main difference to canonical studies of delamination is
that the width of the blister is not xed a priori but is rather
determined by a balance between bending and adhesive forces
at a xed compressionDl. Nevertheless, our analysis shows that,
in fact, as the compression is increased the preferred size of this
blister changes only very slightly.

An important feature of blisters in exible electronic appli-
cations is that the buckled components should retain a suffi-
ciently small curvature that they do not deform plastically under
repeated exing. Here, we assume that this condition is satis-
ed provided that the stress within the beam, s, does not reach
the yield stress, sy. From linear elasticity theory, the maximum
bending stress within a sheet occurs at the surfaces z ¼ �h/2 of
the sheet. Therefore, if the sheet is deformed to have a
maximum curvature rqsrMax then sMax ¼ EhrqsrMax/2(1 � y2)34

and we have that no failure will occur provided that

sy . sMax ¼ Eh

2ð1� n2Þ jqsjMax: (12)

However, our analysis has shown that for the Sticky Elastica,
the maximum curvature occurs at s ¼ 0, �l/2 and has value
jqsjMax ¼

ffiffiffi
2

p
=l ec, see eqn (3). Buckling will therefore occur

without plastic deformation provided that

sy
2h

EDg
.

6

1� n2
; (13)

i.e. provided that the thickness is large enough for given
material properties, or provided the substrate–strip adhesion is
sufficiently weak. We note that this result is precisely the same
as that derived previously from linear considerations3 but
applies independently of the degree of compression, since the
maximum curvature is given solely by the elastocapillary length
l ec. In other words, the sheet is no more likely to fail for larger
compressions than for the initial delamination event – if it
survives the original deformation it can safely be compressed
further.
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