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This document is meant to accompany the code WE15 default.m, which is the
model from the article

”How Climate Model Complexity Influences Sea Ice Stability”,
Wagner & Eisenman, Journal of Climate (2015).

The purpose of this document is to clarify the notation used in the code. In the
following, equations are reproduced from the article with the equation numbers
unchanged, and equations specific to this document are numbered as Sxx.

1 Governing Equations

The time evolution of E(t, x) is determined at each latitude by the net energy flux:

∂E

∂t
= aS︸︷︷︸

solar

− L︸︷︷︸
OLR

+ D∇2T︸ ︷︷ ︸
transport

+ Fb︸︷︷︸
ocean
heating

+ F︸︷︷︸
forcing

, (2)

with insolation
S(t, x) = S0 − S1 cos (ωt)x− S2x

2, (3)

co-albedo

a(x,E) =

{
a0 − a2x2, E > 0 (open water),

ai, E < 0 (ice),
(4)

and OLR
L = A+B(T − Tm). (5)

The temperature for freezing ice is given by solving

k(Tm − T0)/h = −aS +A+B(T0 − Tm)−D∇2T − F (8)

for T0.
We can define the temperature-independent and temperature-dependent com-

ponents of the RHS of Eq. (2) as

C = aS −A+BTm + F, M = B −D∇2, (S1)

such that
∂E

∂t
= C −MT + Fb. (S2)
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2 Invoking a “ghost” layer to efficiently compute
diffusion

Diffusion takes place in a “ghost” layer with temperature Tg that evolves according
to

cg
∂Tg
∂t

=
cg
τg

(T − Tg) +D∇2Tg, (A1)

where cg is the heat capacity of the ghost layer, and the first term on the right-hand
side causes Tg to relax toward T with timescale τg. All other processes occur in the
main layer, whose surface enthalpy evolves as

∂E

∂t
= aS −A−B(T − Tm)− cg

τg
(T − Tg) + Fb + F. (A2)

We write this also in terms of temperature-independent and temperature-dependent
components as

∂E

∂t
= C −MT + Fb. (S3)

with C and M (replacing C, M), defined as

C = aS −A+BTm +
cg
τg
Tg + F, M = B +

cg
τg

(S4)

The temperature for freezing ice in the main layer, T0, can be written as

k(Tm − T0)/h = −C +MT0, (S5)

the solution of which (using h = −E/Lf ) is

T0 =
(
M − kLf

E

)−1 (
C − kLf

E Tm

)
. (S6)

3 Numerical Time-Stepping Scheme

Note that in the following we don’t consider the spatial aspects of the integration
(see Appendix A of the article for more detail). Here we are only concerned with
the time stepping, but keep in mind that E, T,C are vectors of length n.

We time step the enthalpy using the Forward Euler method,

Ei+1 = Ei + ∆Ei, (S7)

where
∆Ei = ∆t(Ci −MTi + Fb), (S8)

with Ci being the forcing defined in Eq. (S4) evaluated at time ti = (i+ 1/2)∆t.
Next, to compute the evolution of Tg with the implicit Backward Euler method,

we write
Tg,i+1 = Tg,i + ∆Tg,i+1, (S9)
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which we eventually want to solve for Tg,i+1 algebraically. Writing (A1) in discrete
form, we have

∆Tg,i+1 = ∆t

[
1

τg
(Ti+1 − Tg,i+1) +

1

cg
D∇2Tg,i+1

]
. (S10)

The issue here is that T is discontinuous at the ice edge and we’ll have to account
for the three regimes (freezing ice, melting ice, open water) separately. Some care
needs to be taken since Ci+1 depends on Tg,i+1. Note that we have

Ci+1 = Ci+1 +
cg
τg
Tg,i+1, (S11)

where C is defined in (S1). This gives (taking Tm = 0)

Ti+1(water) =
Ei+1

cw
, Ti+1(melt) = 0, Ti+1(freeze) =

Ci+1 +
cg
τg
Tg,i+1

M − kLf

Ei+1

,

(S12)
where (water), (melt), and (freeze) indicate grid boxes that are identified by (E >
0), (E < 0 & T > 0), and (E < 0 & T < 0), respectively.

Substituting this into Eq. (S10) and solving for Tg,i+1 results in the following
expression:

Tg,i+1 =

κall −
∆tcg
τ2g

diag

 1

M − kLf

Ei+1


freeze


−1

×

Tg,i +
∆t

τg

(
Ei+1

cw

)
water

+
∆t

τg

 Ci+1

M − kLf

Ei+1


freeze

 , (S13)

where

κall ≡
(

1 +
∆t

τg

)
I − ∆t

cg
D∇2

is the only term that does not have to be computed at every timestep. All other
terms need to be recomputed for each i.
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